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Abstract: In this paper, Caputo boundary value problems of order 3 < ζ ≤ 4 are investigated on the interval [0, 1] .
By Guo-Krasnoselskii fixed point theorem, some criteria of existence and multiplicity of positive and decreasing solutions
are established. The main novelty of the paper lies in its capability to achieve positive solutions while the corresponding
Green’s function changes sign. Finally, two examples are provided to illustrate the application of these results.
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1. Introduction
There is currently great interest in fractional differential equations (FDEs), since these equations appear
naturally in modelling many real world processes, see [8, 23]. Many interesting works were presented for
the study of theoretical knowledge and applications of FDEs, see [5–7, 15, 17, 20, 26, 27], and the references
therein.

Boundary value problems (BVPs) for integer or fractional order differential equations with positive
solutions arise in many fields of science and engineering, see [2, 13, 24]. Therefore, the solvability of positive
solutions constitute a significant class of problems, see [12, 18, 19, 22]. By using the fixed point theorems on
cone, Bai and Lü [1] studied the existence of positive solutions for Riemann-Liouville (R-L) two-point BVPs
with nonnegative Green’s function. In fact, most of the existing papers have been written on positive solutions
are based on the condition the corresponding Green’s functions are nonnegative, see [25].

Recently, several papers have discussed on the existence of positive solutions while the Green’s function
changes sign, see [3, 4, 11, 21, 25]. In [14], Ma established some criteria of existence and nonexistence of positive
solutions for nonlinear periodic BVPs under the condition the Green’s kernel changes sign. In [16], Sun and
Zhao discussed the following BVP

u′′′(χ) = f(χ, u(χ)),

u′(0) = u(1) = u′′(η) = 0,

where f is a given function, η is a given constant, the corresponding Green’s kernel may changes sign on
[0, 1]× [0, 1] . By iterative technique, they gave some existence results of positive solutions for such problem.
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Inspired by the above works, in present paper we deals with the follwing BVP

CDζ
0+u(χ) = f(χ, u(χ)), χ ∈ [0, 1], (1.1)

u′(0) = u′′′(0) = 0, u′′′(η) + λu′′(0) = 0, u(1)− γu(0) = 0, (1.2)

where CDζ
0+ is the Caputo FD, 3 < ζ ≤ 4 , 0 < η, λ, γ < 1 are constants, f : [0, 1] × [0,+∞) → [0,+∞) is

continuous.
To the best of our knowledge, although the idea on obtaining positive solutions while the Green’s function

changes sign has been considered by some papers, very little is known on applying such idea on higher order
Caputo BVPs in the literature. We undertake this investigation in the present paper. By Guo-Krasnoselskii
fixed point theorem, for any positive integer n(n ≥ 2) , our target is to establish some criteria of existence of
at least n − 1 positive and decreasing solutions for BVP (1.1)–(1.2). The most significant feature is that the
present paper capability to achieve positive solutions while the corresponding Green’s function changes sign.

The present paper is organized as follows. In Section 2, some useful definitions are introduced, and some
lemmas are proved. In Section 3, some sufficient conditions for the existence of positive and decreasing solutions
are derived. Section 4 presents some experiments to explain the results. In Section 5, the conclusion is given.

2. Preliminaries
Definition 2.1 [8] Let ζ > 0 . Then the R-L fractional integral is

Iζ0+f(χ) =
1

Γ(ζ)

∫ χ

0

(χ− ξ)ζ−1f(ξ)dξ.

Definition 2.2 [8] Let ζ > 0 . Then the Caputo FD is

CDζ
0+f(χ) =

dn

dχn

∫ χ

0

(χ− ξ)n−ζ−1

Γ(n− ζ)

(
f(ξ)−

n−1∑
k=0

f (k)(0)

k!
ξk
)
dξ, (2.1)

where n = [ζ] + 1 for ζ /∈ N0 ; n = ζ for ζ ∈ N0 , N0 = {0, 1, · · · } . If f ∈ ACn[0, 1] , then the Caputo FD is

CDζ
0+f(χ) =

1

Γ(n− ζ)

∫ χ

0

(χ− ξ)n−ζ−1f (n)(ξ)dξ. (2.2)

Lemma 2.3 [8] Let ζ > 0 and let n be given by Definition 2.2. If f ∈ ACn[0, 1] , then

Iζ0+
C
Dζ

0+f(χ) = f(χ)−
n−1∑
k=0

f (k)(0)

k!
χk.

Lemma 2.4 The BVP
CDζ

0+u(χ) = y(χ), 3 < ζ ≤ 4, y ∈ C[0, 1], (2.3)

u′(0) = u′′′(0) = 0, u′′′(η) + λu′′(0) = 0, u(1)− γu(0) = 0, (2.4)

has a unique solution

u(χ) =

∫ 1

0

G(χ, ξ)y(ξ)dξ, (2.5)

2



YAN et al./Turk J Math

where
G(χ, ξ) = g1(χ, ξ) + g2(χ, ξ) + g3(χ, ξ), (2.6)

and

g1(χ, ξ) = − 1

(1− γ)Γ(ζ)
(1− ξ)ζ−1, (χ, ξ) ∈ [0, 1]× [0, 1],

g2(χ, ξ) =


0, 0 ≤ χ ≤ ξ ≤ 1,

(χ−ξ)ζ−1

Γ(ζ) , 0 ≤ ξ ≤ χ ≤ 1,

g3(χ, ξ) =


0, ξ ≥ η,

( 1
1−γ −χ2)(η−ξ)ζ−4

2λΓ(ζ−3) , ξ < η.

Proof. By Lemma 2.3, we may transfer (2.3) to the integral equation

u(χ)−
3∑

k=0

u(k)(0)

k!
χk =

1

Γ(ζ)

∫ χ

0

(χ− ξ)ζ−1y(ξ)dξ.

Using the condition of u′(0) = u′′′(0) = 0 , it follows

u(χ)− u(0)− u′′(0)

2
χ2 =

1

Γ(ζ)

∫ χ

0

(χ− ξ)ζ−1y(ξ)dξ.

According to u′′′(η) + λu′′(0) = 0, u(1)− γu(0) = 0 , we have

u′′(0) =
−1

λΓ(ζ − 3)

∫ η

0

(η − ξ)ζ−4y(ξ)dξ,

u(0) = − 1

(1− γ)Γ(ζ)

∫ 1

0

(1− ξ)ζ−1y(ξ)dξ − 1

2(1− γ)
u′′(0).

Thus

u(χ) = 1
Γ(ζ)

∫ χ

0
(χ− ξ)ζ−1y(ξ)dξ − 1

(1−γ)Γ(ζ)

∫ 1

0
(1− ξ)ζ−1y(ξ)dξ +

1
1−γ −χ2

2λΓ(ζ−3)

∫ η

0
(η − ξ)ζ−4y(ξ)dξ

=
∫ 1

0

(
g1(χ, ξ) + g2(χ, ξ) + g3(χ, ξ)

)
y(ξ)dξ

=
∫ 1

0
G(χ, ξ)y(ξ)dξ.

Conversely, if u(χ) satisfies the integral expression u(χ) =
∫ 1

0
G(χ, ξ)y(ξ)dξ , then

u(χ) = Iζ0+y(χ) + c0 + c1χ+ c2χ
2 + c3χ

3, (2.7)

where

c0 = − 1

1− γ
Iζ0+y(1) +

1

2(1− γ)λ
Iζ−3
0+ y(η), c2 =

−1

2λ
Iζ−3
0+ y(η), c1 = c3 = 0. (2.8)
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Since ζ > 3 , we have u′′′(χ) = Iζ−3
0+ y(χ) . Thus u ∈ C3[0, 1] . By (2.1), it follows from the equality

CDζ
0+u(χ) = d4

dχ4

∫ χ

0
(χ−ξ)3−ζ

Γ(4−ζ)

(
u(ξ)− u(0)− u′(0)ξ − u′′(0)

2 ξ2 − u′′′(0)
6 ξ3

)
dξ

= d4

dχ4

∫ χ

0
(χ−ξ)3−ζ

Γ(4−ζ)

(
Iζ0+y(ξ) + c0 + c2ξ

2 − u(0)− u′(0)ξ − u′′(0)
2 ξ2 − u′′′(0)

6 ξ3
)
dξ

= d4

dχ4 I
4−ζ
0+ Iζ0+y(χ) = y(χ)

(2.9)

that CDζ
0+u ∈ C[0, 1] . From the argument used in Remark 2 of [10], we deduce that u ∈ AC4[0, 1] . The

equality (2.9) also implies u(χ) satisfies (2.3). Moreover, through (2.7) and (2.8), we can obtain u(χ) satisfies
(2.4). Thus, u(χ) is a solution of the BVP (2.3)–(2.4).

Remark 2.5 From (2.2) in Definition 2.2, we can also get the fact u(χ) satisfies (2.3). Since u ∈ AC4[0, 1] ,
we have

CDζ
0+y(χ) = 1

Γ(4−ζ)

∫ χ

0
(χ− ξ)3−ζu(4)(ξ)dξ = d

dχ
1

Γ(5−ζ)

∫ χ

0
(χ− ξ)4−ζu(4)(ξ)dξ

= d
dχ

1
Γ(5−ζ)

(
u′′′(ξ)(χ− ξ)4−ζ |χ0 +

∫ χ

0
(4− ζ)(χ− ξ)3−ζu′′′(ξ)dξ

)
= d

dχ
1

Γ(4−ζ)

∫ χ

0
(χ− ξ)3−ζu′′′(ξ)dξ = d

dχ
1

Γ(4−ζ)

∫ χ

0
(χ− ξ)3−ζIζ−3

0+ y(ξ)dξ

= d
dχI

4−ζ
0+ Iζ−3

0+ y(χ) = y(χ).

Remark 2.6 Let
λ ≤ γη2(ζ − 3) (2.10)

hold. Then G(χ, ξ) given by (2.6) changes sign.

Proof. From the expression of g2(χ, ξ) and g3(χ, ξ) , it follows that g2(χ, ξ) is increasing with respect
to χ , and g3(χ, ξ) is decreasing with respect to χ for ξ < η .

For ξ ≥ η , 0 < η < 1 , (χ, ξ) ∈ [0, 1]× [0, 1] , it implies

G(χ, ξ) = g1(χ, ξ) + g2(χ, ξ) + g3(χ, ξ) = − (1−ξ)ζ−1

(1−γ)Γ(ζ) + g2(χ, ξ)

≤ − (1−ξ)ζ−1

(1−γ)Γ(ζ) + g2(1, ξ) = − (1−ξ)ζ−1

(1−γ)Γ(ζ) +
(1−ξ)ζ−1

Γ(ζ) .

Since 3 < ζ ≤ 4 , 0 < γ < 1 , we have

G(χ, ξ) ≤ −(1− ξ)ζ−1 + (1− γ)(χ− ξ)ζ−1

(1− γ)Γ(ζ)
<

−(1− ξ)ζ−1 + (χ− ξ)ζ−1

(1− γ)Γ(ζ)
≤ 0.

Next, we consider the case ξ < η , 0 < η < 1 , (χ, ξ) ∈ [0, 1]× [0, 1] , we have

G(χ, ξ) ≥ − (1−ξ)ζ−1

(1−γ)Γ(ζ) + g2(χ, ξ) + g3(1, ξ) ≥ − (1−ξ)ζ−1

(1−γ)Γ(ζ) +
( 1
1−γ −1)(η−ξ)ζ−4

2λΓ(ζ−3)

= 1
Γ(ζ) (−

(1−ξ)ζ−1

(1−γ) +
( 1
1−γ −1)(ζ−1)(ζ−2)(ζ−3)(η−ξ)ζ−4

2λ )

≥ 1
Γ(ζ) (−

1
1−γ +

( 1
1−γ −1)(ζ−1)(ζ−2)(ζ−3)(η−ξ)ζ−4

2λ ).
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It follows from (2.10) that

G(χ, ξ) ≥ 1

Γ(ζ)
(− 1

1− γ
+

(ζ − 1)(ζ − 2)(η − ξ)ζ−4

2(1− γ)η2
) ≥ −η2 + (η − ξ)ζ−4

(1− γ)η2Γ(ζ)
> 0.

Thus, it gets G(χ, ξ) > 0, 0 ≤ ξ < η , and G(χ, ξ) ≤ 0, η ≤ ξ ≤ 1 .

Lemma 2.7 Let (2.10) hold and

K0 = {y ∈ C[0, 1] : y ≥ 0 and y is decreasing on [0, 1]}.

Suppose that y ∈ K0 . Then u given by (2.5) satisfies u ∈ K0 , and u is concave on [0, η] .

Proof. According to Lemma 2.4, we have u(χ) =
∫ 1

0
G(χ, ξ)y(ξ)dξ . Since y(χ) ≥ 0, χ ∈ [0, 1] , we get

u′′(χ) = 1
Γ(ζ−2)

∫ χ

0
(χ− ξ)ζ−3y(ξ)dξ − 1

λΓ(ζ−3)

∫ η

0
(η − ξ)ζ−4y(ξ)dξ

≤ 1
Γ(ζ−2)

∫ χ

0
(χ− ξ)ζ−3y(ξ)dξ − 1

γη2(ζ−3)Γ(ζ−3)

∫ η

0
(η − ξ)ζ−4y(ξ)dξ

≤ 1
Γ(ζ−2)

( ∫ χ

0

(
(χ− ξ)ζ−3 − (η − ξ)ζ−4

)
y(ξ)dξ −

∫ η

χ
(η − ξ)ζ−4y(ξ)dξ

)
≤ 0, χ ∈ [0, η].

This shows u is concave on [0, η] .
Next we will prove u ∈ K0 . For χ ∈ [0, η] , u′(χ) is decreasing, then

u′(χ) ≤ u′(0) = 0. (2.11)

For χ ∈ (η, 1] , in view of y ∈ K0 and (2.10), it gets

u′(χ) = 1
Γ(ζ−1)

∫ χ

0
(χ− ξ)ζ−2y(ξ)dξ − χ

λΓ(ζ−3)

∫ η

0
(η − ξ)ζ−4y(ξ)dξ

≤ 1
Γ(ζ−1)

∫ 1

0
y(ξ)dξ − η2

λΓ(ζ−3)

∫ 1

0
y(ηξ)dξ

≤ 1
Γ(ζ−1)

∫ 1

0
y(ξ)dξ − 1

γΓ(ζ−2)

∫ 1

0
y(ηξ)dξ ≤ 0.

(2.12)

As a consequence of (2.11) and (2.12), we have u′(χ) ≤ 0, χ ∈ [0, 1] . This shows that u(χ) is decreasing on
[0, 1] . Considering

u(1) = ( 1
1−γ − 1)

(
1

2λΓ(ζ−3)

∫ η

0
(η − ξ)ζ−4y(ξ)dξ − 1

Γ(ζ)

∫ 1

0
(1− ξ)ζ−1y(ξ)dξ

)
≥ ( 1

1−γ − 1)
(

η
2λΓ(ζ−3)

∫ 1

0
y(ηξ)dξ − 1

Γ(ζ)

∫ 1

0
y(ξ)dξ

)
≥ ( 1

1−γ − 1)
(

(ζ−2)(ζ−1)
2γηΓ(ζ)

∫ 1

0
y(ηξ)dξ − 1

Γ(ζ)

∫ 1

0
y(ξ)dξ

)
≥ 0,

we get u(χ) ≥ 0, χ ∈ [0, 1] . Hence u ∈ K0 .
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Lemma 2.8 Let (2.10) hold and y ∈ K0 . Then u given by (2.5) satisfies

min
χ∈[0,θ]

u(χ) ≥ θ∗∥u∥,

where θ ∈ (0, η) , θ∗ = η−θ
η , ∥u∥ = max

χ∈[0,1]
|u(χ)| .

Proof. By Lemma 2.7, we have

u(χ) ≥ η − χ

η
u(0) +

χ

η
u(η) ≥ η − χ

η
u(0) =

η − χ

η
∥u∥, χ ∈ [0, η].

Consequently, for θ ∈ (0, η) , it gets

min
χ∈[0,θ]

u(χ) = u(θ) ≥ η − θ

η
∥u∥ = θ∗∥u∥.

Lemma 2.9 [9] (Guo-Krasnoselskii fixed point theorem) Let E be a Banach space and K ⊆ E be a cone.
Suppose Ω1 ⊆ E and Ω2 ⊆ E are bounded open sets such that 0 ∈ Ω1,Ω1 ⊂ Ω2 , and let T : K ∩ (Ω2 \Ω1) → K

be a completely continuous operator, and T satisfies either
(1) ∥Tu∥ ≤ ∥u∥ for u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≥ ∥u∥ for u ∈ K ∩ ∂Ω2 , or
(2) ∥Tu∥ ≥ ∥u∥ for u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≤ ∥u∥ for u ∈ K ∩ ∂Ω2 .
Then T has a fixed point in K ∩ (Ω2 \ Ω1) .

3. Main results

Let 0 < θ ≤ η − 2γ(ζ−3)
ζ(ζ−1)(ζ−2)η

2 < η and

K = {u ∈ K0 : min
χ∈[0,θ]

u(χ) ≥ θ∗∥u∥}.

Lemma 3.1 Let (2.10) hold. Define T : K → C[0, 1] by

Tu(χ) =

∫ 1

0

G(χ, ξ)f(ξ, u(ξ))dξ, χ ∈ [0, 1].

Assume that f satisfies
(H) f(χ, u) is decreasing with respect to χ , and increasing with respect to u .
Then T : K → K , and T is completely continuous.

Proof. As u ∈ K and (H) holds, we have f(·, u(·)) ∈ K0 . Thus, we determine that T : K → K via
Lemmas 2.7 and 2.8.

Next, we will use the Arzela-Ascoli theorem to testify the consequence. Here, (a) Let un → u in K .
Then

|Tun(χ)− Tu(χ)| ≤ 1
Γ(ζ)

∫ χ

0
(χ− ξ)ζ−1|f(ξ, un(ξ))− f(ξ, u(ξ))|dξ

+ 1
(1−γ)Γ(ζ)

∫ 1

0
(1− ξ)ζ−1|f(ξ, un(ξ))− f(ξ, u(ξ))|dξ

+
1

1−γ −χ2

2λΓ(ζ−3)

∫ η

0
(η − ξ)ζ−4|f(ξ, un(ξ))− f(ξ, u(ξ))|dξ.

6
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Note that f is continuous, and thus, we obtain

∥Tun − Tu∥ → 0, n → ∞.

Thus, T is continuous.
(b) Let Ω ⊂ K be bounded. Then, for any u ∈ Ω , we have

|Tu(χ)| ≤ L
Γ(ζ)

∫ χ

0
(χ− ξ)ζ−1dξ + L

(1−γ)Γ(ζ)

∫ 1

0
(1− ξ)ζ−1dξ +

1
1−γ L

2λΓ(ζ−3)

∫ η

0
(η − ξ)ζ−4dξ

≤ (1 + 1
1−γ )

L
Γ(ζ) +

1
1−γ L

2λΓ(ζ−2) ,

where L = max
0≤χ≤1,0≤u≤M

|f(χ, u)|+ 1 . Hence, T is uniformly bounded.

(c) For any u ∈ Ω, χ1, χ2 ∈ [0, 1], χ1 < χ2 , we get

|Tu(χ2)− Tu(χ1)| ≤
∣∣∣ 1
Γ(ζ)

∫ χ2

0
(χ2 − ξ)ζ−1f(ξ, u(ξ))dξ − 1

Γ(ζ)

∫ χ1

0
(χ1 − ξ)ζ−1f(ξ, u(ξ))dξ

∣∣∣
+

χ2
2−χ2

1

2λΓ(ζ−3)

∫ η

0
(η − ξ)ζ−4f(ξ, u(ξ))dξ

≤ L
Γ(ζ+1) (χ

ζ
2 − χζ

1) +
(χ2

2−χ2
1)L

2λΓ(ζ−2) ,

(3.1)

which implies that the left-hand side of (3.1)→ 0 if χ1 → χ2 . Thus, T is equicontinuous in K .
Combining the above three steps (a), (b), (c) with the Arzela-Ascoli theorem, we discern that T is

completely continuous.

Lemma 3.2 Let (2.10) and (H) hold. Suppose there is a number r1 > 0 such that

f(0, r1) ≤
r1
A
,

where A = 1
(1−γ)λΓ(ζ−2) > 0 is a constant. Then we have

∥Tu∥ ≤ ∥u∥, u ∈ K ∩ ∂Ωr1 , (3.2)

with Ωr1 = {u ∈ C[0, 1] : ∥u∥ < r1} .

Proof. From Remark 2.6, it gets

0 < G(χ, ξ) = − (1− ξ)ζ−1

(1− γ)Γ(ζ)
+ g2(χ, ξ) +

( 1
1−γ − χ2)(η − ξ)ζ−4

2λΓ(ζ − 3)
, 0 ≤ ξ < η,

and G(χ, ξ) ≤ 0, η ≤ ξ ≤ 1 . As 3 < ζ ≤ 4 , 0 < η, γ < 1 and (2.10) holds, for 0 ≤ ξ < η , we can deduce

G(χ, ξ) ≤ (χ−ξ)ζ−1

Γ(ζ) +
( 1
1−γ −χ2)(η−ξ)ζ−4

2λΓ(ζ−3)

≤ 2γη2

(ζ−1)(ζ−2) ·
χζ−1(1− ξ

χ )ζ−1

2λΓ(ζ−3) +
( 1
1−γ −χ2)(η−ξ)ζ−4

2λΓ(ζ−3)

≤ 2
(ζ−1)(ζ−2) ·

χ2(η−ξ)ζ−4

2λΓ(ζ−3) +
( 1
1−γ −χ2)(η−ξ)ζ−4

2λΓ(ζ−3)

≤
1

1−γ (η−ξ)ζ−4

2λΓ(ζ−3) = g3(0, ξ), ξ ≤ χ,

(3.3)

7
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and

G(χ, ξ) ≤
( 1
1−γ − χ2)(η − ξ)ζ−4

2λΓ(ζ − 3)
≤

1
1−γ (η − ξ)ζ−4

2λΓ(ζ − 3)
= g3(0, ξ), χ ≤ ξ. (3.4)

Thus, for u ∈ K ∩ ∂Ωr1 , we have

0 ≤ Tu(χ) =
∫ 1

0
G(χ, ξ)f(ξ, u(ξ))dξ

=
∫ η

0
G(χ, ξ)f(ξ, u(ξ))dξ +

∫ 1

η
G(χ, ξ)f(ξ, u(ξ))dξ

≤
∫ η

0
G(χ, ξ)f(ξ, u(ξ))dξ

≤ f(0, u(0)) ·
∫ η

0
g3(0, ξ)dξ

≤ f(0, r1)
1

1−γ

2λΓ(ζ−2) ≤ f(0, r1)A ≤ r1 = ∥u∥, χ ∈ [0, 1].

This shows that (3.2) holds.

Lemma 3.3 Let (2.10) and (H) hold. Suppose there is a number r2 > 0 such that

f(θ, θ∗r2) ≥
r2
B
.

where B =
∫ θ

0
G(0, ξ)dξ . Then we have

∥Tu∥ ≥ ∥u∥, u ∈ K ∩ ∂Ωr2 , (3.5)

with Ωr2 = {u ∈ C[0, 1] : ∥u∥ < r2} .

Proof. First, we will prove 0 < B < A . For ξ < θ < η , it gets G(0, ξ) > 0 via Remark 2.6. Hence,
B > 0 . As (3.3) and (3.4) hold, we have

B =

∫ θ

0

G(0, ξ)dξ ≤
∫ θ

0

g3(0, ξ)dξ <
1

2λ(1− γ)Γ(ζ − 2)
≤ A.

Thus, B is a constant, and satisfies 0 < B < A . Next, we shall show that
∫ 1

θ
G(0, ξ)f(ξ, u(ξ))dξ ≥ 0 . Using

the condition (H) and 0 < θ ≤ η − 2γ(ζ−3)
ζ(ζ−1)(ζ−2)η

2 , we have

∫ 1

θ
G(0, ξ)f(ξ, u(ξ))dξ =

∫ η

θ
G(0, ξ)f(ξ, u(ξ))dξ +

∫ 1

η
G(0, ξ)f(ξ, u(ξ))dξ

≥ f(η, u(η))
( ∫ η

θ
G(0, ξ)dξ +

∫ 1

η
G(0, ξ)dξ

)
= f(η, u(η))

( ∫ η

θ

1
1−γ (η−ξ)ζ−4

2λΓ(ζ−3) dξ −
∫ 1

θ
1

(1−γ)Γ(ζ) (1− ξ)ζ−1dξ
)

= f(η, u(η))
(

(η−θ)ζ−3

2(1−γ)λΓ(ζ−2) −
(1−θ)ζ

(1−γ)Γ(ζ+1)

)
≥ f(η,u(η))

(1−γ)Γ(ζ+1)

(
ζ(ζ−1)(ζ−2)(η−θ)ζ−3

2γη2(ζ−3) − 1
)
≥ 0.
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Now, it remains to verify (3.5). For u ∈ K ∩ ∂Ωr2 , it gets

∥Tu∥ = Tu(0) =
∫ 1

0
G(0, ξ)f(ξ, u(ξ))dξ

=
∫ θ

0
G(0, ξ)f(ξ, u(ξ))dξ +

∫ 1

θ
G(0, ξ)f(ξ, u(ξ))dξ

≥
∫ θ

0
G(0, ξ)f(ξ, u(ξ))dξ

≥ f(θ, u(θ))
∫ θ

0
G(0, ξ)dξ

≥ f(θ, θ∗r2)B ≥ r2 = ∥u∥.

Thus, (3.5) holds.

Theorem 3.4 Let (2.10) and (H) hold. Suppose that: there are two numbers r1 > 0 and r2 > 0 with r1 ̸= r2 ,
and r1, r2 satisfy

f(0, r1) ≤
r1
A
, f(θ, θ∗r2) ≥

r2
B
.

Then the BVP (1.1)–(1.2) has at least one positive and decreasing solution u , and

r1 ≤ ∥u∥ ≤ r2 (or r2 ≤ ∥u∥ ≤ r1).

Furthermore, u(χ) is concave on [0, η] .

Proof. Let r1 < r2 . In view of Lemmas 3.2 and 3.3, we get

∥Tu∥ ≤ ∥u∥, u ∈ K ∩ ∂Ωr1 ,

∥Tu∥ ≥ ∥u∥, u ∈ K ∩ ∂Ωr2 .

Hence, it follows the Guo-Krasnoselskii fixed point theorem that T has a fixed point u ∈ K ∩ (Ωr2\Ωr1) , which
is a desired solution of the BVP (1.1)–(1.2).

Theorem 3.5 Let (2.10) and (H) hold. Assume that there exist three positive numbers r1, r2, r3 with r1 <

r2 < r3 , and meet one of the following conditions

f(0, r1) ≤
r1
A
, f(θ, θ∗r2) >

r2
B
, f(0, r3) ≤

r3
A
, (3.6)

f(θ, θ∗r1) ≥
r1
B
, f(0, r2) <

r2
A
, f(θ, θ∗r3) ≥

r3
B
. (3.7)

Then the BVP (1.1)–(1.2) has at least two positive and decreasing solutions u1 and u2 , and

r1 ≤ ∥u1∥ < r2 < ∥u2∥ ≤ r3.

Proof. We only consider the case when (3.6) is satisfied, as the proof for the case (3.7) is similar. By
Lemmas 3.2 and 3.3, we get

∥Tu∥ ≤ ∥u∥, u ∈ K ∩ ∂Ωr1 ,

9
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∥Tu∥ > ∥u∥, u ∈ K ∩ ∂Ωr2 ,

and
∥Tu∥ ≤ ∥u∥, u ∈ K ∩ ∂Ωr3 .

Hence, it follows Guo-Krasnoselskii fixed point theorem that T has two fixed points u1 ∈ K ∩ (Ωr2\Ωr1) and
u2 ∈ K ∩ (Ωr3\Ωr2) , which are two desired solutions of the BVP (1.1)–(1.2).

Remark 3.6 Similar to Theorem 3.5, for any positive integer n(n ≥ 2) , we can obtain the existence of at least
n− 1 positive and decreasing solutions of the BVP (1.1)–(1.2), where n is the number of ri, i = 1, 2, · · · , n .

4. Examples

Example 4.1 Consider

CD3.5
0+u(χ) =

u(χ)

625
+ 1− χ, χ ∈ [0, 1], (4.1)

u′(0) = u′′′(0) = 0, u′′′(0.5) +
1

32
u′′(0) = 0, u(1)− 0.5u(0) = 0, (4.2)

where ζ = 3.5, η = 0.5, λ = 1
32 , γ = 0.5 , f(χ, u) = u

625 + 1− χ . Then (2.10) and (H) are satisfied.
The Green’s function G(χ, ξ) = g1(χ, ξ) + g2(χ, ξ) + g3(χ, ξ), (χ, ξ) ∈ [0, 1]× [0, 1] , where

g1(χ, ξ) = − 2

Γ(3.5)
(1− ξ)2.5, (χ, ξ) ∈ [0, 1]× [0, 1],

g2(χ, ξ) =


0, 0 ≤ χ ≤ ξ ≤ 1,

(χ−ξ)2.5

Γ(3.5) , 0 ≤ ξ ≤ χ ≤ 1,

g3(χ, ξ) =


0, ξ ≥ 0.5,

16(2−χ2)(0.5−ξ)−0.5

Γ(0.5) , ξ < 0.5.

This shows

G(χ, ξ) = − 2
Γ(3.5) (1− ξ)2.5 + g2(χ, ξ) +

16(2−χ2)(0.5−ξ)−0.5

Γ(0.5)

≥ − 2
Γ(3.5) (1− ξ)2.5 + 16(2−χ2)(0.5−ξ)−0.5

Γ(0.5)

≥ − 2
Γ(3.5) +

16
Γ(0.5) = 8.4252 > 0, 0 ≤ ξ < 0.5,

and
G(χ, ξ) = − 2

Γ(3.5) (1− ξ)2.5 + g2(χ, ξ) + g3(χ, ξ)

≤ − 2
Γ(3.5) (1− ξ)2.5 + (1−ξ)2.5

Γ(3.5) = − 1
Γ(3.5) (1− ξ)2.5 ≤ 0, 0.5 ≤ ξ ≤ 1.

Thus, Remark 2.6 holds.
Next, we choose θ = 0.4 . Through computing, we have

θ∗ =
η − θ

η
=

1

5
, A =

1

(1− γ)λΓ(ζ − 2)
=

64

Γ(1.5)
= 72.2163,

10
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B =

∫ θ

0

G(0, ξ)dξ =

∫ 0.4

0

(
− 2

Γ(3.5)
(1− ξ)2.5 +

32(η − ξ)−0.5

Γ(0.5)

)
dξ = 13.9707.

Moreover, it is easy to achieve

f(0, r1) = 1 +
r1
625

≤ r1
A
, if r1 ≥ 81.6507,

f(0.4, 0.2 ∗ r2) = 0.6 +
r2

3125
≥ r2

B
, if r2 ≤ 8.4201.

Thus, we can choose r1 = 82, r2 = 8 in Theorem 3.4. Then the conditions of Theorem 3.4 are satisfied.
Consequently the BVP (4.1)–(4.2) has a positive and decreasing solution u satisfying

8 ≤ ∥u∥ ≤ 82.

Example 4.2 Consider

CD3.5
0+u(χ) =

u2(χ)

20861
+ 1− χ, χ ∈ [0, 1], (4.3)

u′(0) = u′′′(0) = 0, u′′′(0.5) +
1

32
u′′(0) = 0, u(1)− 0.5u(0) = 0, (4.4)

where ζ = 3.5, η = 0.5, λ = 1
32 , γ = 0.5 , f(χ, u) = u2

20861 + 1 − χ . Then (2.10) and (H) are satisfied, and
Remark 2.6 holds.

From Example 4.1, we get θ = 0.4 and θ∗ = 1
5 , A = 72.2163, B = 13.9707 . By computing, we have

f(0.4, 0.2 ∗ r1) = 0.6 +
0.04 ∗ r21
20861

≥ r1
B
, if r1 ≥ 37322 or r1 ≤ 8.3843,

f(0, r2) = 1 +
r22

20861
<

r2
A
, if 143.9608 < r2 < 144.9075.

Thus, we can choose r1 = 8, r2 = 144, r3 = 37323 in Theorem 3.5. Then the conditions of Theorem 3.5 are
satisfied. Consequently the BVP (4.3)–(4.4) has two positive and decreasing solution u1, u2 , and

8 ≤ ∥u1∥ < 144 < ∥u2∥ ≤ 37323.

5. Conclusion
In the paper, for any positive integer n(n ≥ 2) , the existence of at least n− 1 positive and decreasing solutions
for Caputo three-point BVPs are studied. The obtained solutions are also proved to be concave on [0, η] . The
main novelty of the paper lies in obtaining positive solutions while the corresponding Green’s function changes
sign. For future work, one can discuss the positive solutions for other types of FDEs, and can also consider
much more difficult research on fractional differential systems.
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